The Ratios of a Pentagon

- Diagonal : Edge
$\mathbf{d : e = \Phi : 1}$ where $\Phi=\frac{1+\sqrt{5}}{2}$
(See the proof under "The Golden Ratio and the Pentagon" in the $10^{\text {th }}$ Grade Sequences and Series unit.)
- Circumradius : Short-chord (which is YD)

Because $\triangle \mathrm{ODY} \sim \triangle \mathrm{ACD}$ we can show that $\mathbf{r : Y D = \Phi : 1}$

- Circumradius : Edge
$\angle \mathrm{ADY}=90^{\circ} \rightarrow \mathrm{AY}^{2}=\mathrm{AD}^{2}+\mathrm{YD}^{2}$
and since $\quad A Y=2 r ; A D=\Phi e ; ~ Y D=r / \Phi$
we get

$$
(2 \mathrm{r})^{2}=(\Phi \mathrm{e})^{2}+(\mathrm{r} / \Phi)^{2}
$$

which leads to $\mathrm{r}: \mathrm{e}=\frac{\Phi^{2}}{\sqrt{4 \Phi^{2}-1}}: 1$
and eventually simplifies to

$$
e: r=\frac{\sqrt{10-2 \sqrt{5}}}{2}: 1
$$

- Inradius : Edge (The "Inradius", shown as h, is the radius of the inscribed circle)

Using the right $\triangle O X D$, we get $O D^{2}=X D^{2}+O X^{2}$
and since $\quad O X=h ; \quad X D=1 / 2 \mathrm{e} ; \quad O D=r=e \cdot \frac{\sqrt{50+10 \sqrt{5}}}{10}$
we get $\quad\left(\frac{\mathrm{e} \sqrt{50+10 \sqrt{5}}}{10}\right)^{2}=(1 / 2 \mathrm{e})^{2}+\mathrm{h}^{2} \quad$ which eventually simplifies to $\quad \mathbf{h}: \mathbf{e}=\frac{\sqrt{\mathbf{2 5 + 1 0 \sqrt { 5 }}}: \mathbf{1}}{\mathbf{1 0}}$

- Circumradius: Inradius

Given the above two ratios, we can say $\mathrm{r}: \mathrm{h}=\frac{\sqrt{50+10 \sqrt{5}}}{10}: \frac{\sqrt{25+10 \sqrt{5}}}{10}$ which eventually simplifies to $\mathrm{r}: \mathrm{h}=\sqrt{6-2 \sqrt{5}}: 1 \quad$ which, in this case, can be simplified using Bhāskara's Identity ${ }^{1}$ to $\mathbf{r}: \mathbf{h}=(\sqrt{5}-\mathbf{1}): \mathbf{1}$ with a reciprocal of $\mathbf{h}: \mathbf{r}=\frac{\mathbf{1 + \sqrt { 5 }}}{4}: \mathbf{1}$

- Mid-diagonal: Circumradius (The "Mid-diagonal" is shown as k)

Because $\triangle \mathrm{BOY} \sim \triangle \mathrm{AED}$ we can show that $\mathrm{k}: \mathbf{r}=\boldsymbol{\Phi}: \mathbf{1}$

- Mid-diagonal : Edge

Since $\mathrm{k}=\Phi \cdot \mathrm{r}$, we can use the above ratio we found for $\mathrm{r}: \mathrm{e}$, multiply it by Φ,
and after simplifying, we get $\mathbf{k}: \mathbf{e}=\frac{\sqrt{25+10 \sqrt{5}}}{5}: \mathbf{1}$

- Mid-diagonal: Inradius

Comparing the above ratios $\mathrm{k}: \mathrm{e}$ and $\mathrm{h}: \mathrm{e}$ we can now conclude that

$$
k: h=2: 1
$$

${ }^{1}$ Bhāskara's Identity is $\sqrt{a \pm \sqrt{b}} \equiv \sqrt{\frac{a+x}{2}} \pm \sqrt{\frac{a-x}{2}} \quad$ where $x=\sqrt{a^{2}-b}$
This allows us to simplify a compound radical of the form $\sqrt{a \pm \sqrt{b}}$ if $a^{2}-b$ turns out to be a perfect square. With the problem at hand, $\sqrt{6-2 \sqrt{5}}$, which is the same as $\sqrt{6-\sqrt{20}}, a^{2}-b=16$, so $x=4$. Bhāskara's Identity then gives us $\sqrt{\frac{6+4}{2}}-\sqrt{\frac{6-4}{2}}$ which simplifies to $\sqrt{5}-1$. With most other compound radicals, such as $\sqrt{25-10 \sqrt{5}}$, which is the same as $\sqrt{25-\sqrt{500}}, a^{2}-\mathrm{b}$ is not a perfect square, so Bhāskara's Identity is not helpful.

Various Methods for Constructing a Pentagon

Ptolemy's Construction (ca. 150AD)

Construction: Draw a horizontal diameter and find the midpoint, Y, of the radius. A is located vertically above the center. Find Z on the diameter by drawing an arc through A with Y as the center. AZ is the desired length of the edge of the pentagon.
To Prove: If the radius of the circle is 1 , then $A Z=\frac{\sqrt{10-2 \sqrt{5}}}{2}$, which is the required length of the edge of the pentagon. (See "The Ratios of a Pentagon" on the previous page.)

Proof: $\mathrm{AY}^{2}=\mathrm{AO}^{2}+\mathrm{OY}^{2} \rightarrow \mathrm{AY}^{2}=1^{2}+(1 / 2)^{2} \rightarrow \mathbf{A Y}=\frac{\sqrt{5}}{\mathbf{2}} \quad \mathrm{AY}=\mathrm{ZY}$ and $\mathrm{OZ}=\mathrm{ZY}-\mathrm{OY} \rightarrow \mathbf{O Z}=\frac{\sqrt{5}-\mathbf{1}}{\mathbf{2}}$ $\mathrm{AZ}^{2}=\mathrm{AO}^{2}+\mathrm{OZ}^{2} \rightarrow \mathrm{AZ}^{2}=1^{2}+\left(\frac{\sqrt{5}-1}{2}\right)^{2}$ which leads to $\mathrm{AZ}=\frac{\sqrt{10-2 \sqrt{5}}}{2}$ Q.E.D.

Richmond's Construction (by H. W. Richmond in 1893)

Construction: Draw a horizontal diameter and then find the midpoint, K, of the radius. Draw a vertical diameter to locate points Y and A (the first point of the pentagon) on the circle. Bisect $\angle \mathrm{AKO}$ and mark G where the bisector crosses AO. Bisect the external angle to $\angle \mathrm{AKO}$ (i.e., bisect the angle formed by KO and AK extended) and mark X where this bisector crosses OY. (Note that $\angle \mathrm{GKX}$ is a right angle.) Draw horizontal lines through points G and X in order to locate the four remaining points of the pentagon.
To Prove: If the radius of the circle is 1 , the lengths of the five edges of the
 pentagon $A B C D E$ are all equal to $1 / 2 \cdot \sqrt{10-2 \sqrt{5}}$. (See "The Ratios of a Pentagon" on the previous page.)
Proof: Using $\Delta \mathrm{KAO}$, if we let $\mathrm{AO}=1$ then $\mathrm{OK}=1 / 2$ and $\mathrm{AK}=\frac{\sqrt{5}}{2}$ Using the Triangle Angle-Bisector
Theorem, we get $\mathrm{AG}: \mathrm{OG}=\mathrm{AK}: \mathrm{OK}=\sqrt{5}: 1$. Using Euclid $\mathrm{V}-18 \rightarrow(\mathrm{AG}+\mathrm{OG}): \mathrm{OG}=(\sqrt{5}+1): 1$
which gives us $\mathrm{AO}: \mathrm{OG}=(\sqrt{5}+1): 1 \rightarrow \mathrm{OG}=\frac{\sqrt{5}-1}{4}$ and $\mathrm{AG}=\mathrm{AO}-\mathrm{OG} \rightarrow \mathrm{AG}=\frac{5-\sqrt{5}}{4}$
BG is a leg to two right triangles $\rightarrow \mathrm{BG}^{2}=\mathrm{BO}^{2}-\mathrm{OG}^{2}=\mathrm{AB}^{2}-\mathrm{AG}^{2} \rightarrow \mathrm{AB}^{2}=\mathrm{BO}^{2}-\mathrm{OG}^{2}+\mathrm{AG}^{2}$
which gives us $A B^{2}=1^{2}-\left(\frac{\sqrt{5}-1}{4}\right)^{2}+\left(\frac{5-\sqrt{5}}{4}\right)^{2}$ Solving for $A B$ gives the desired $\mathbf{A B}=\frac{\sqrt{10-2 \sqrt{5}}}{2}$
We can now use the Altitude of the Hypotenuse Theorem with the right $\Delta \mathrm{GKX} \rightarrow \mathrm{KO}^{2}=\mathrm{OG} \cdot \mathrm{OX}$
Now $1 / 4=\frac{\sqrt{5}-1}{4} \cdot \mathrm{OX} \rightarrow \mathrm{OX}=\frac{\sqrt{5}+1}{4}$ Using right $\Delta \mathrm{OXC}$ leads to $\mathrm{CX}=\frac{\sqrt{10-2 \sqrt{5}}}{4}$ and $\quad \mathbf{C D}=\frac{\sqrt{10-2 \sqrt{5}}}{2}$
It can then be shown that the rest of the edges of the pentagon also have the same length. Q.E.D.

Hirano's Construction (by Yosifusa Hirano in the $19^{\text {th }}$ century)

Construction: Along the horizontal diameter of the given circle, draw two half-sized circles (with centers J and K). Draw line YK intersecting the halfsized circle at points N and P . Using Y as the center, and YN as the radius, draw a circle, which locates points C and D on the original circle. Using Y as the center, and YP as the radius, draw an arc (not shown), which locates points B and E on the original circle. ABCDE is the desired regular pentagon.
To Prove: The short-chord (YD) and the mid-diagonal (YE) are both in the required ratio to the radius (OY) so that the pentagon can be regular. (See "The Ratios of a Pentagon" on the previous page.)
Proof: If we let $\mathrm{OY}=1$, then $\mathrm{NK}=\mathrm{OK}=1 / 2 ; \mathrm{YK}=\sqrt{5} / 2 ; \mathrm{YD}=\mathrm{YN}=\frac{\sqrt{5}-1}{2}$

Therefore $\mathrm{YD}: \mathrm{OY}=\frac{\sqrt{5}-1}{2}: 1$ which is also $\mathbf{O Y}: \mathbf{Y D}=\frac{\sqrt{5}+1}{2}: \mathbf{1}=\boldsymbol{\Phi}: \mathbf{1}$, as required.
$\mathrm{YE}=\mathrm{YP}=1 / 2+1 / 2+\frac{\sqrt{5}-1}{2}=\frac{\sqrt{5}+1}{2}$. Therefore $\mathrm{YE}: \mathbf{O Y}=\frac{\sqrt{5}+1}{2}: \mathbf{1}=\boldsymbol{\Phi}: \mathbf{1}$, as required. Q.E.D.

