

Comparing the above ratios k:e and h:e we can now conclude that $|\mathbf{k}:\mathbf{h}=2:1$

¹ Bhāskara's Identity is $\sqrt{a \pm \sqrt{b}} \equiv \sqrt{\frac{a+x}{2}} \pm \sqrt{\frac{a-x}{2}}$ where $x = \sqrt{a^2 - b}$

This allows us to simplify a compound radical of the form $\sqrt{a \pm \sqrt{b}}$ if $a^2 - b$ turns out to be a perfect square. With the problem at hand, $\sqrt{6-2\sqrt{5}}$, which is the same as $\sqrt{6-\sqrt{20}}$, $a^2-b=16$, so x=4. Bhāskara's Identity then gives us $\sqrt{\frac{6+4}{2}} - \sqrt{\frac{6-4}{2}}$ which simplifies to $\sqrt{5} - 1$. With most other compound radicals, such as $\sqrt{25-10\sqrt{5}}$, which is the same as $\sqrt{25-\sqrt{500}}$, a^2-b is not a perfect square, so Bhāskara's Identity is not helpful.

Various Methods for Constructing a Pentagon

Ptolemy's Construction (ca. 150AD)

Construction: Draw a horizontal diameter and find the midpoint, Y, of the radius. A is located vertically above the center. Find Z on the diameter by drawing an arc through A with Y as the center. AZ is the desired length of the edge of the pentagon.

To Prove: If the radius of the circle is 1, then $AZ = \frac{\sqrt{10-2\sqrt{5}}}{2}$, which is the required length of the edge of the pentagon. (See "The Ratios of a Pentagon"

on the previous page.)

Proof:
$$AY^2 = AO^2 + OY^2 \rightarrow AY^2 = 1^2 + (\frac{1}{2})^2 \rightarrow AY = \frac{\sqrt{5}}{2}$$
 $AY = ZY \text{ and } OZ = ZY - OY \rightarrow OZ = \frac{\sqrt{5}-1}{2}$
 $AZ^2 = AO^2 + OZ^2 \rightarrow AZ^2 = 1^2 + (\frac{\sqrt{5}-1}{2})^2$ which leads to $AZ = \frac{\sqrt{10-2\sqrt{5}}}{2}$ Q.E.D.

Richmond's Construction (by H. W. Richmond in 1893)

Construction: Draw a horizontal diameter and then find the midpoint, K, of the radius. Draw a vertical diameter to locate points Y and A (the first point of the pentagon) on the circle. Bisect $\angle AKO$ and mark G where the bisector crosses AO. Bisect the external angle to $\angle AKO$ (i.e., bisect the angle formed by KO and AK extended) and mark X where this bisector crosses OY. (Note that $\angle GKX$ is a right angle.) Draw horizontal lines through points G and X in order to locate the four remaining points of the pentagon.

To Prove: If the radius of the circle is 1, the lengths of the five edges of the pentagon ABCDE are all equal to $\frac{1}{2} \cdot \sqrt{10 - 2\sqrt{5}}$. (See "The Ratios of a Pentagon" on the previous page.)

Proof: Using Δ KAO, if we let AO = 1 then OK = $\frac{1}{2}$ and AK = $\frac{\sqrt{5}}{2}$ Using the Triangle Angle-Bisector Theorem, we get AG: OG = AK: OK = $\sqrt{5}$: 1. Using Euclid V-18 \rightarrow (AG+OG): OG = ($\sqrt{5}$ +1): 1 which gives us AO: OG = ($\sqrt{5}$ +1): 1 \rightarrow OG = $\frac{\sqrt{5}-1}{4}$ and AG = AO-OG \rightarrow AG = $\frac{5-\sqrt{5}}{4}$ BG is a leg to two right triangles \rightarrow BG² = BO²-OG² = AB² - AG² \rightarrow AB² = BO²-OG² + AG² which gives us AB² = 1² - $\left(\frac{\sqrt{5}-1}{4}\right)^2 + \left(\frac{5-\sqrt{5}}{4}\right)^2$ Solving for AB gives the desired **AB** = $\frac{\sqrt{10-2\sqrt{5}}}{2}$ We can now use the *Altitude of the Hypotenuse Theorem* with the right Δ GKX \rightarrow KO² = OG \cdot OX Now $\frac{1}{4} = \frac{\sqrt{5}-1}{4} \cdot OX \rightarrow OX = \frac{\sqrt{5}+1}{4}$ Using right Δ OXC leads to CX = $\frac{\sqrt{10-2\sqrt{5}}}{4}$ and **CD** = $\frac{\sqrt{10-2\sqrt{5}}}{2}$ It can then be shown that the rest of the edges of the pentagon also have the same length. *Q.E.D.*

Hirano's Construction (by Yosifusa Hirano in the 19th century)

Construction: Along the horizontal diameter of the given circle, draw two half-sized circles (with centers J and K). Draw line YK intersecting the half-sized circle at points N and P. Using Y as the center, and YN as the radius, draw a circle, which locates points C and D on the original circle. Using Y as the center, and YP as the radius, draw an arc (not shown), which locates points B and E on the original circle. ABCDE is the desired regular pentagon.

To Prove: The short-chord (YD) and the mid-diagonal (YE) are both in the required ratio to the radius (OY) so that the pentagon can be regular. (See "The Ratios of a Pentagon" on the previous page.)

B C C Y D

Proof: If we let OY = 1, then $NK = OK = \frac{1}{2}$; $YK = \sqrt{5}/2$; $YD = YN = \frac{\sqrt{5}-1}{2}$ Therefore $YD : OY = \frac{\sqrt{5}-1}{2} : 1$ which is also $OY : YD = \frac{\sqrt{5}+1}{2} : 1 = \Phi : 1$, as required. $YE = YP = \frac{1}{2} + \frac{1}{2} + \frac{\sqrt{5}-1}{2} = \frac{\sqrt{5}+1}{2}$. Therefore $YE : OY = \frac{\sqrt{5}+1}{2} : 1 = \Phi : 1$, as required. *Q.E.D.*