Selected Proofs ${ }^{1}$ from The Elements, Book I

Theorem 1 Construction of an equilateral triangle, given one side. Proof:

1. Given line AB .
2. With A as center and using AB as the radius draw circle BCD (see drawing). With B as center and using AB as the radius draw circle ACE. (Post. 3)
3. From point C , where the two circles intersect, draw lines to both points A and B. (Post. 1).
4. Since point A is the center of circle $B C D, A C \cong A B$ Since point B is the center of circle $A C E, B C \cong A B$ (Def. of a circle)

5. $\mathrm{AC} \cong \mathrm{BC}$ (C.N. 1)
6. $\mathrm{AC} \cong \mathrm{AB} \cong \mathrm{BC} \quad \therefore \triangle \mathrm{ABC}$ is equilateral. (Definition of equilateral) Q.E.D.

Theorem 5 In an Isosceles triangle, (a) the base angles are equal to one another, and (b) if the two sides are extended, then the angles under the bases will be equal to one another.

Proof:

1. Given $\triangle \mathrm{ABC}$ is an Isosceles triangle. Let AB and AC be the equal sides. (Def. of Isosceles triangle)
2. Extend sides AB and AC to D and E , respectively.
(Post. 2)
3. Choose point F at random on BD. Cut off AE at G , such that $\mathrm{AG} \cong \mathrm{AF}$. (Th. I-3)
4. Join the lines FC and GB. (Post. 1)
5. Regarding $\triangle \mathrm{AFC}$ and $\triangle \mathrm{AGB}$:
they share $\angle \mathrm{GAF} ; \mathrm{AF} \cong \mathrm{AG}$ (step 3); $\mathrm{AB} \cong \mathrm{AC}$ (step 1)
$\therefore \triangle \mathrm{AFC} \cong \triangle \mathrm{AGB} ; \mathrm{FC} \cong \mathrm{BG} ; \angle \mathrm{ACF} \cong \angle \mathrm{ABG}$;
and $\angle \mathrm{AFC} \cong \angle \mathrm{AGB}$ (Th. I-4)

6. Since $\mathrm{AF} \cong \mathrm{AG}$ and $\mathrm{AB} \cong \mathrm{AC}$ then $\mathrm{BF} \cong \mathrm{CG}$ (C.N. 3)
7. Regarding $\triangle \mathrm{BFC}$ and $\triangle \mathrm{CGB}$:
$\angle \mathrm{BFC} \cong \angle \mathrm{CGB}$ (same as $\angle \mathrm{AFC} \cong \angle \mathrm{AGB}$, step 5)
$\mathrm{BF} \cong \mathrm{CG}$ (step 7) and $\mathrm{FC} \cong \mathrm{BG}$ (step 5)
$\therefore \triangle \mathrm{BFC} \cong \triangle \mathrm{CGB}, \angle \mathrm{BCF} \cong \angle \mathrm{CBG}$, and
$\angle \mathbf{C B F} \cong \angle \mathrm{BCG}$ (Th. I-4) Q.E.D. (for part b)
8. Since $\angle \mathrm{ACF} \cong \angle \mathrm{ABG}$ (step 5) and in these angles $\angle \mathrm{BCF} \cong \angle \mathrm{CBG}$ (step 7)

Then the remaining angles are equal (C.N. 3):
$\therefore \angle \mathrm{ABC} \cong \angle \mathrm{ACB} \quad$ Q.E.D. (for part a)

[^0]
Selected Proofs from The Elements, Book I (continued)

Theorem 9 Construction of an angle bisector.

Proof:

1. Given $\angle \mathrm{BAC}$ (to be bisected) with point D randomly on AB.
2. Let AC be cut off at E , such that $\mathrm{AD} \cong \mathrm{AE}$ (Th. I-3)
3. Draw DE. (Post. 1)
4. Draw equilateral $\triangle \mathrm{DEF}$ on DE. (Th. I-1)
5. Draw AF. (Post. 1)
6. $\mathrm{DF} \cong \mathrm{EF}$ (Def. of Equilateral Triangle)
7. $\angle \mathrm{DAF} \cong \angle \mathrm{EAF}$ (Th. I-8 SSS)
8. $\therefore \angle \mathrm{BAC}$ has been bisected. (Def. of Bisect) Q.E.D.

Theorem 10 Bisection of a line.
Proof:

1. Given line AB to be bisected.
2. Draw equilateral $\triangle \mathrm{ABC}$ on AB (Th. I-1)
3. Draw the bisector CD of $\angle \mathrm{ACB}$ (Th. I-9)
4. $\angle \mathrm{ACD} \cong \angle \mathrm{BCD}$ (Def. Angle Bisector)
5. $\mathrm{AC} \cong \mathrm{BC}$ (Def. of Equilateral Triangle)
6. $\triangle \mathrm{ACD} \cong \triangle \mathrm{BCD}$ and $\mathrm{AD} \cong \mathrm{BD}$ (Th. I-4)
7. $\therefore \mathrm{AB}$ has been bisected. (Def. of Bisect) Q.E.D.

Theorem 13 Supplementary Angle Theorem (Y Theorem). If two adjacent angles form a straight line, then the sum of the angles is equal to two right angles.

Proof:

1. Given line $A B$ set up on line DC.
2. If $\angle \mathrm{CBA} \cong \angle \mathrm{ABD}$ then they are two right angles. (Definition of Right Angles)
3. If these two angles are not equal, then draw BE from point B and perpendicular to line DC. (Th. I-11)
4. $\angle \mathrm{CBE}$ and $\angle \mathrm{DBE}$ are right angles. (Def. of Perpendicular)

5. $\mathrm{m} \angle \mathrm{CBE} \quad=\quad \mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{ABE} \quad$ (from drawing: No reason stated)
6. $\mathrm{m} \angle \mathrm{CBE}+\mathrm{m} \angle \mathrm{DBE}=\mathrm{m} \angle \mathrm{DBE}+\mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{ABE} \quad$ (C.N. 2)
7. $\mathrm{m} \angle \mathrm{DBA} \quad=\mathrm{m} \angle \mathrm{DBE}+\mathrm{m} \angle \mathrm{ABE} \quad$ (from drawing: No reason stated)
8. $\mathrm{m} \angle \mathrm{DBA}+\mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle \mathrm{DBE}+\mathrm{m} \angle \mathrm{ABE}+\mathrm{m} \angle \mathrm{ABC} \quad$ (C.N. 2)
9. $\mathrm{m} \angle \mathrm{CBE}+\mathrm{m} \angle \mathrm{DBE}=\mathrm{m} \angle \mathrm{DBA}+\mathrm{m} \angle \mathrm{ABC}$
(steps $6 \& 8, \underline{\text { C.N. 1) }}$
10. Because $\angle \mathrm{CBE}$ and $\angle \mathrm{DBE}$ are both right angles (step 4),
$\angle \mathrm{DBA}$ and $\angle \mathrm{ABC}$ together form two right angles [they are supplementary]. (C.N. 1) Q.E.D.

Selected Proofs from The Elements, Book I (continued)

Theorem 15 (X Theorem) Vertical angles are equal. Proof:

1. Given lines AB and CD intersecting at E .

2. The sum of $\angle \mathrm{CEA}$ and $\angle \mathrm{AED}$ is equal to two right angles. (Th. I-13)
3. The sum of $\angle \mathrm{CEA}$ and $\angle \mathrm{CEB}$ is equal to two right angles. (Th. I-13)
4. The sum of $\angle \mathrm{CEA}$ and $\angle \mathrm{AED}$ is equal to the sum of $\angle \mathrm{CEA}$ and $\angle \mathrm{CEB}$ (Post. 4 and C.N. 1)
5. $\angle \mathrm{AED} \cong \angle \mathrm{CEB}$ (C.N. 3) (Similarly, it can be proven that $\angle \mathrm{CEA} \cong \angle \mathrm{BED}$) Q.E.D.

Theorem 23 Copying an angle.
Proof:

1. Given angle DCE to be copied to point A on the line AB .
2. Let DE be drawn. (Post. 1)
3. By using the three lines CD, DE, and CE construct the triangle AFG such that $\mathrm{CD}=\mathrm{AF}, \mathrm{CE}=\mathrm{AG}$, and $\mathrm{DE}=\mathrm{FG}$. (Th. I-22)
4. Since the three sides of the triangle AFG are equal to the

three sides of the triangle CDE, then the angle DCE is equal to the angle FAG. (Th. I-8) Q.E.D.

Theorem 27 If two lines are cut by a transversal, and alternate interior angles are equal, then the lines are parallel.
Proof:

1. Given that EF falls on AE and CD , and $\angle \mathrm{AEF} \cong \angle \mathrm{EFD}$
2. Assume that AB and CD meet at point G ,
 in the direction of B, D.
3. Then in $\triangle \mathrm{EFG}$, the exterior angle ($\angle \mathrm{AEF}$) is equal to an interior and opposite angle ($\angle \mathrm{EFG}$), which is impossible. (Th. I-16)
4. \therefore the assumption (step 2) is false. AB and CD cannot meet in the direction of B, D.
5. Similarly, it can be shown that AB and CD cannot meet in the direction of A, C.
6. AB and CD do not meet in either direction, therefore they are parallel. (Def. of parallel) Q.E.D.

Selected Proofs from The Elements, Book I (continued)

Theorem 29 If two parallel lines are cut by a transversal, then the alternate interior angles are equal, the corresponding angles are equal, and the same-side interior angles add to two right angles.
[Note: This is the first theorem where Euclid uses the fifth postulate.]

Proof:

1. Given parallel lines AB and CD , with line EF falling on them.
2. Assume that $\angle \mathrm{AGH}$ and $\angle \mathrm{GHD}$ are not equal, and that $\angle \mathrm{AGH}$ is larger. So, $\angle \mathrm{AGH}>\angle \mathrm{GHD}$.
3. $\angle \mathrm{AGH}+\angle \mathrm{BGH}>\angle \mathrm{GHD}+\angle \mathrm{BGH}$ (C.N.2 for inequalities)
4. $\angle \mathrm{AGH}+\angle \mathrm{BGH}=$ two right angles (Th. I-13)

5. two right angles $>\angle \mathrm{GHD}+\angle \mathrm{BGH}$ (C.N. 1 for inequalities)
6. Because the sum of $\angle \mathrm{GHD}$ and $\angle \mathrm{BGH}$ is less than two right angles, lines AB and CD must meet. (Postulate 5)
7. But lines AB and CD cannot meet. (Def. of Parallel Lines)
8. Steps 6 and 7 are in contradiction, so our assumption (step 2) must be false, and
$\therefore \angle \mathrm{AGH} \cong \angle \mathrm{GHD}$ [alternate interior angles are equal].
9. $\angle \mathrm{AGH} \cong \angle \mathrm{EGB}$ (Th. I-15)
10. $\therefore \angle \mathrm{EGB} \cong \angle \mathrm{GHD}$ (C.N.1) [corresponding angles are equal]
11. $\angle \mathrm{EGB}+\angle \mathrm{BGH}=\angle \mathrm{GHD}+\angle \mathrm{BGH}$ (C.N.2)
12. $\angle \mathrm{EGB}+\angle \mathrm{BGH}=$ two right angles (Th. I-13)
13. $\therefore \angle \mathrm{GHD}+\angle \mathrm{BGH}=$ two right angles (C.N.1)
[same-side interior angles add to two right angles] Q.E.D.

Theorem 32 In any triangle, (a) Any exterior angle is equal to the sum of the two opposite interior angles, and (b) The three interior angles add to two right angles.

Proof:

1. Given $\triangle \mathrm{ABC}$
2. Extend BC to D (Post. 2)
3. Draw CE parallel to AB (Th. I-31)
4. Since $A B$ is parallel to $C E$, and $A C$ transverses both of them, $\angle \mathrm{ACE} \cong \angle \mathrm{BAC}$ (Th. I-29)

and $\angle \mathrm{ECD} \cong \angle \mathrm{ABC}$ (Th. I-29)
5. $\angle \mathrm{ACE}+\angle \mathrm{ECD}=\angle \mathrm{BAC}+\angle \mathrm{ABC}$ (C.N. 2)
6. $\angle \mathrm{ACE}+\angle \mathrm{ECD}=\angle \mathrm{ACD} \quad$ (from drawing)
7. $\angle \mathrm{ACD}=\angle \mathrm{BAC}+\angle \mathrm{ABC}$ (C.N. 1) Q.E.D. (for part a)
8. Adding $\angle \mathrm{ACB}$ to both sides of equation: $\angle \mathrm{ACD}+\angle \mathrm{ACB}=\angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{ACB} \quad$ (C.N. 2)
9. But $\angle \mathrm{ACD}$ and $\angle \mathrm{ACB}$ are adjacent angles and form the straight line BD , therefore they are equal to two right angles. (Th. I-13)
10. $\therefore \angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{ACB}$ is also equal to two right angles. (C.N. 1) Q.E.D. (for part b)

Selected Proofs from The Elements, Book I (continued) Euclid's Proof of the Pythagorean Theorem (Theorem I-47)

1. Given: $\triangle \mathrm{ABC}$ is a right triangle, with $\angle \mathrm{BAC}$ a right angle.
2. Construct a square on each of the 3 sides of $\triangle \mathrm{ABC}$. (Th. I-46)

3. Draw AL parallel to BD. (Th. I-31)
4. Draw lines AD and FC. (Post. 1)
5. (a) $\angle \mathrm{DBC} \& \angle \mathrm{FBA}$ are both right angles. (Def. of Square)
(b) $\angle \mathrm{DBC} \cong \angle \mathrm{FBA} \quad$ (Post. 4)
(c) $\angle \mathrm{DBC}+\angle \mathrm{ABC}=\angle \mathrm{FBA}+\angle \mathrm{ABC} \quad$ (C.N. 2)
(d) $\angle \mathrm{ABD} \cong \angle \mathrm{FBC}$
(from drawing)
6. (a) $\mathrm{BD} \cong \mathrm{BC}$ and $\mathrm{AB} \cong \mathrm{FB}$. (Def. of Square)
(b) $\triangle \mathrm{ABD} \cong \triangle \mathrm{FBC}$ because $\mathrm{BD} \cong \mathrm{BC}$ and $\mathrm{AB} \cong \mathrm{FB}$ and $\angle \mathrm{ABD} \cong \angle \mathrm{FBC}$ (step 6). (Th. I-4)
7. (a) $\angle \mathrm{BAG}$ is a right angle. (Def. of Square)
(b) $\angle \mathrm{BAC}$ and $\angle \mathrm{BAG}$ are adjacent and both right angles, so CA is in a straight line with AG. (Th. I-14)
(c) $\angle \mathrm{BAC} \cong \angle \mathrm{FBA}$
(Post. 4)
(d) CG is parallel to FB .
(Th. I-27)
(e) [The area of] square GB is twice [the area of] $\triangle \mathrm{FBC}$, because they have the same base FB and lie between the same parallels FB and GC. (Th. I-41)
8. [The area of] parallelogram BL is twice [the area of] $\triangle \mathrm{ABD}$, because they have the same base BD and they lie between the same parallels BD and AL . (Th. I-41)
9. $\Delta \mathrm{FBC} \cong \triangle \mathrm{ABD}$, therefore twice [the area of] $\Delta \mathrm{FBC}$ is equal to twice [the area of] $\Delta \mathrm{ABD}$. (C.N. 1)
10. [The area of] square GB is equal to [the area of] parallelogram BL. (C.N. 1)
11. Similarly, if lines AE and BK are drawn, parallelogram CL can be proven equal to square HC .
12. The sum of [the areas of] squares HC and GB is equal to
the sum of [the areas of] parallelograms CL and BL. (C.N. 2)
13. [The area of] the square BE is equal to the sum of [the areas of] parallelograms CL and BL. (fr. drawing)
14. \therefore [The area of] the square $\mathbf{B E}$ is equal to the sum of [the areas of] the squares GB and HC.
(C.N. 1) Q.E.D.

Theorem X-1 from The Elements ${ }^{2}$

In the Original Greek

 $\lambda \epsilon \iota \pi о \mu \in ́ v o v ~ \mu \epsilon i \zeta o \nu ~ \vec{\eta}$ rò $\eta_{\eta} \mu \tau \sigma$, каì тои̂то $\dot{a} \in i$

 Sıaı $\rho \in ́ \sigma \epsilon \sigma \iota v$.

 rò HZ , тov̂ δ è $\Theta \mathrm{A} \mu \epsilon i \zeta o \nu \vec{\eta}$ тò $\eta_{\eta}^{\mu} \mu \sigma v$ тò $\Theta \mathrm{K}$, $\lambda o \iota \pi o ̀ v ~ a ̈ \rho a ~ \tau o ̀ ~ \Delta Z ~ \lambda o \iota \pi o ̂ ̂ ~ \tau o ̂ ̂ ~ A K ~ \mu \in i \zeta o ́ v ~ \epsilon ̇ \sigma \tau \iota v . ~$
 є่ $\sigma \tau \iota \nu . ~ \epsilon ̌ \lambda a \sigma \sigma o \nu ~ a ̆ ~ \rho a ~ \tau o ̀ ~ A K ~ \tau o ̂ ̀ ~ Г . ~$

Translated into English

Two unequal magnitudes being set out, if from the greater there be subtracted a magnitude greater than the half, and from the remainder a magnitude greater than its half, and so on continually, there will be left some magnitude which will be less than the lesser magnitude set out.
Let $A B, \Gamma$ be the two unequal magnitudes, of which $A B$ is the greater; I say that, if from $A B$ there be subtracted a magnitude greater than its half, and from the remainder a magnitude greater than its half, and so on continually, there will be left some magnitude which will be less than the magnitude Γ.

For Γ, if multiplied, will at some time be greater than $A B$ [see v. Def. 4]. Let it be multiplied, and let $\Delta \mathrm{E}$ be a multiple of Γ, greater than $A B$, and let $\Delta \mathrm{B}$ be divided into the parts $\Delta Z, \mathrm{ZH}, \mathrm{HE}$ equal to Γ, and from $A B$ let there be subtracted $B \Theta$ greater than its half, and from $A \theta$ let there be subtracted ΘK greater than its half, and so on continually, until the divisions in AB are equal in multitude to the divisions in ΔE.

Let, then, $A K, K \theta, \theta B$ be divisions equal in multitude with $\triangle Z, Z H, H E$; now since $\triangle \mathrm{E}$ is greater than $A B$, and from ΔE there has been subtracted EH less than its half, and from $A B$ there has been subtracted $B \theta$ greater than its half, therefore the remainder $\mathrm{H} \Delta$ is greater than the remainder $\theta \mathrm{A}$. And since $H \Delta$ is greater than θA, and from $H \Delta$ there has been subtracted the half, HZ , and from θA there has been subtracted $\Theta \mathrm{K}$ greater than its half, therefore the remainder ΔZ is greater than the remainder $A K$. Now ΔZ is equal to Γ; and therefore Γ is greater than $A K$. Therefore $A K$ is less than Γ.

There is therefore left of the magnitude $A B$ the magnitude AK which is less than the lesser magnitude set out, namely, Γ; which was to be proved-and this can be similarly proved even if the parts to be subtracted be halves.

Γ

[^1]Appendix C - Euclid's Elements

[^0]: ${ }^{1}$ All of the proofs listed here are the result of me re-wording T. L. Heath's translation of The Elements (Dover Publications, 1956).

[^1]: ${ }^{2}$ Ivor Thomas, Greek Mathematical Works. Harvard University Press, 1998. pp 453-5

