Probability Summary Page

The Probability of an Event

The probability of an event successfully occurring, $\mathrm{P}(\mathrm{E})$, is equal to the number of possible (equally likely) success outcomes divided by the total number of possible (equally likely) outcomes.

$$
\mathrm{P}(\mathrm{E})=\frac{\text { number of successful outcomes }}{\text { number of total possible outcomes }}
$$

Example: One card is drawn from a standard 52 -card deck. Find the probability of getting a spade.
Solution: The probability is $\frac{13}{52}$ or $\mathbf{2 5 \%}$.
Statistical Probability
The more you repeat an event, the closer the average outcome gets to the mean outcome.
Example: If we flip a coin n times, we expect that the number of heads will get closer to 50% for larger values of n .
Example: Since the probability of rolling a sum of a 9 with two dice is 11.1%, we expect that if we roll two dice a large number of times, then we will get a 9 about 11.1% of the time.

Two Independent Events

If A and B are independent events, the probability that both A and B will occur is the product of probabilities of each occurring separately.

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B})
$$

Example: If you roll a die and flip a coin, what is the probability of getting a 2 and a head?
Solution: $\frac{1}{6} \cdot \frac{1}{2}=\frac{1}{12}$
The Probability of a Complement
If A is the complement of B, then the sum of their probabilities is equal to one, or 100%.
Example: What is the probability of flipping three coins and getting at least one head?
Solution: The complement (or opposite) of this is getting no heads (which is all tails), which has a probability of $1 / 8$. Therefore, the probability of getting at least one head is $1-1 / 8=7 / 8$.

