Note for the teacher: part of the assignment here is for the student to format this page (as a computer literacy exercise).

Possibility Summary Page
The Multiplication Rule (The Wardrobe Problem).
If there are X ways to choose one thing, and Y ways to choose another thing, then there are $\mathrm{X} \cdot \mathrm{Y}$ ways to choose these two things together. (This assumes that these two things are independent.)
Factorials (The Seating Chart Problem).
The number of ways of rearranging n objects is n !
For example, $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$.
Permutations (The Prize Problem).
The number of ways to select r out of n objects, in order, is $n P r$.
For example, 9P4 $=9 \cdot 8 \cdot 7 \cdot 6=3024$.
Combinations (The Committee Problem).
The number of ways to select r out of n objects, without regard to order, is nCr .
For example, $9 \mathrm{C} 4=\frac{{ }_{9} \mathrm{P}_{4}}{4!}=\frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1}=126$.
Distinguishable Arrangements (Word Scrambling).
If there are a total of N objects, of which A objects are indistinguishable from one another, and another B
objects are indistinguishable from one another, etc., then the number of possible arrangements is: $\frac{\mathrm{N}!}{\mathrm{A}!\mathrm{B}!\mathrm{C}!\ldots}$

