Cantor's Set Theory

Proof that the rational numbers are countable (which means they can be put into a one-to-one correspondence with the counting numbers):

- Make a 2-D array which encompasses all of the rational numbers in the following way: the first row is $1 / 1,2 / 1,3 / 1$, etc. the second row is $1 / 2,2 / 2,3 / 2$, etc. the third row is $1 / 3,2 / 3,3 / 3$, etc.
- Now we can number all of them along diagonals so that \#1 is $1 / 1$, and \#2 is $2 / 1$, \#3 is $1 / 2, \# 4$ is $3 / 1$, \#5 is $2 / 2, \# 6$ is $1 / 3, \# 7$ is $4 / 1$ \#8 is $3 / 2$, etc.
- In this way all of the rational numbers can be mapped onto the counting numbers.

Proof that the algebraic numbers are countable:

- The algebraic numbers are the complex number solutions to the algebraic equations in the form of: $a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x^{1}+a_{0} x^{0}=0$, where a_{i} is an integer, and n is a positive integer.
- Our goal is to find a systematic method for putting all of the algebraic in some specific order, thereby matching them in a one-to-one correspondence with the counting numbers.
- Let $\mathrm{A}(\mathrm{i})$ be the $\mathrm{i}^{\text {th }}$ algebraic number.
- Let $K=n+\left|a_{n}\right|+\left|a_{n-1}\right|+\left|a_{n-2}\right|+\ldots+\left|a_{1}\right|+\left|a_{0}\right|$, where K represents the "index" of the equation.
- Usually, there are several algebraic equations for a given index, K. Some of these equations have multiple solutions. Some of these solutions will be ignored because they are algebraic numbers that were found with an equation from a smaller index. Of all of the new solutions to the equations produced by a given index, in the form $\mathrm{a}+\mathrm{b} i$, we will put them into a specific order by arranging the numbers according first to the size of b, and then, in the case of equal b values, according to the size of a .
- There are no equations where $\mathrm{K}=0$ or $\mathrm{K}=1$ that yield any algebraic numbers as solutions.
- Of the equations where $K=2$, only one algebraic number $(x=0)$ is produced. Therefore $A(1)=0$
- Of the equations where $K=3$, only two new algebraic numbers $(x=-1,1)$ are produced. Therefore $\mathrm{A}(2)=-1$, and $\mathrm{A}(3)=1$
- Of the equations where $K=4$, six new algebraic numbers $(x= \pm 2, \pm 1 / 2, \pm i)$ are produced. Therefore $\mathrm{A}(4)=-2, \mathrm{~A}(5)=-1 / 2, \mathrm{~A}(6)=1 / 2, \mathrm{~A}(7)=2, \mathrm{~A}(8)=-i, \mathrm{~A}(9)=i$.
- Of the equations where $K=5$, twenty new algebraic numbers (including $x= \pm \sqrt{2}, \pm \sqrt{2} i, \pm \phi$) are produced, thereby giving us the values of $\mathrm{A}(9)$ through $\mathrm{A}(28)$.
- This can be continued indefinitely for all values of K.
- Therefore all of the algebraic numbers can be put into a one-to-one correspondence with the counting numbers.

Proof that the real numbers are not countable:

- Every real number has a specific and unique decimal representation.
- Assumption: The real numbers between 0 and 1 are countable.
- It is therefore possible to write down all of the real numbers between 0 and 1 in a systematic order from $a_{1}, a_{2}, a_{3}, \ldots$ etc., thereby matching them in a one-to-one correspondence with the counting numbers.
- Let d be a 2-D array such that for any number, a_{n}, the $i^{\text {th }}$ digit of a_{n} is given by $d_{n, i}$.

This means that the $4^{\text {th }}$ number in our list, a_{4}, has a decimal expansion of:
$\mathrm{a}_{4}=0 . \mathrm{d}_{4,1} \mathrm{~d}_{4,2} \mathrm{~d}_{4,3} \mathrm{~d}_{4,4} \mathrm{~d}_{4,5} \ldots \quad$ (So if $\mathrm{a}_{4}=0.463872048 \ldots$, then $\mathrm{d}_{4,6}=2$)

- Now we will create a new number, j , between 0 and 1 . We assign its first digit to be anything but $d_{1,1}$ and the $2^{\text {nd }}$ digit to be anything but $\mathrm{d}_{2,2}$, and the $3^{\text {rd }}$ digit to be anything but $\mathrm{d}_{3,3}$, etc.
- $\quad j$ is not equal to a_{1} because they have different first digits; j is not equal to a_{2} because they have different second digits; j is not equal to a_{3} because they have different third digits, etc. j is not equal to any number on our list. We have therefore found a real number between 0 and 1 that is not on the list, so the list does not include all real numbers. Therefore, our assumption is false; the real numbers are not countable.
- Corollary: There exists at least one irrational number that is not algebraic. (These numbers are called transcendental numbers.)
- Corollary: The transcendental numbers are not countable. (Loosely speaking, this means that there are "far more" transcendental numbers, than there are rational or algebraic numbers.)
- Corollary: The transcendental numbers and the irrational numbers have the same order, or cardinal number (i.e., they can be mapped into a one-to-one correspondence with each other).

