The Mathematics of the Game "Set"

- There are a total of 1080 unique sets.
- 108 of these sets (10% of all sets) have 3 attributes that match.
- \# ways to choose 3 attributes and their types $=\frac{12 \cdot 9 \cdot 6}{3!}=108$.
- $\quad \#$ ways to choose 0 non-matching attributes $=1$.
- Total \# of ways to have this kind of set $=108 \cdot 1=\underline{108}$.
- 324 of these sets (30% of all sets) have 2 attributes that match.
- \# ways to choose 2 attributes and their types $=\frac{12 \cdot 9}{2!}=54$.
- \# ways to choose 1 non-matching attribute $=3!=6$.
- Total \# of ways to have this kind of set $=6 \cdot 54=\underline{324}$.
- 432 of these sets (40% of all sets) have 1 attributes that match.
- $\quad \#$ ways to choose 1 attribute and its type $=\frac{12}{1!}=12$.
- $\quad \#$ ways to choose 2 non-matching attributes $=(3!)^{2}=36$.
- Total \# of ways to have this kind of set $=12 \cdot 36=\underline{432}$.
- 216 of these sets (20% of all sets) have 0 attributes that match.
- \# ways to choose 0 attributes and their types $=1$.
- $\quad \#$ ways to choose 3 non-matching attributes $=(3!)^{3}=216$.
- Total \# of ways to have this kind of set $=1 \cdot 216=\underline{216}$.
- The odds against there being no Set in 12 cards when playing a game of Set start off at $30: 1$ for the first round. Then they quickly fall, and after about the 4 th round they are $14: 1$ and for the next 20 rounds they slowly fall towards 13:1. So for most of the rounds played, the odds are between 14:1 and 13:1. (I have not yet figured out a way to derive the value of $30: 1$.)
- The odds against there being no Set in 15 cards when playing a game are around 90:1. (Note that the Set instructions manual gives the odds at $2500: 1$, but that is assuming that 15 random cards are selected, which never happens; 15 cards are only on the table right after 12 cards are known to have no sets.)
- The largest group of cards you can put together without creating a set is 20 .
- If 26 Sets are drawn from a full deck (of 81 cards), the remaining 3 cards must also form a Set (i.e., it is impossible to end a game with just 3 cards on the table).
- Around 30% of all games always have a Set among the 12 cards, and thus never need to go to 15 cards.
- Given any two cards, there exists one and only one card which forms a set with those two cards. Therefore, the probability of choosing 3 random cards from a complete deck and getting a set is $1 / 79$.
- Since the number of possible combinations of three cards chosen from twelve cards is $12 \mathrm{C} 3(12 \mathrm{C} 3=12!/[(12-3)!3!]=220)$, the expected number of sets in a group of 12 cards (first deal) is $1 / 79$ times 12 C 3 , or approximately 2.78 . (I'm still not convinced that this logic is sound; 2.78 may be incorrect. The logic for getting 2.78 would definitely be correct if we were selecting a group of three cards, 220 times, each time from a full deck - but this is not what we are doing here. I have also seen 2.4 as the average number of sets in the first deal.)

